en:manuel_reference:methode_micro:verif_habby

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revisionBoth sides next revision
en:manuel_reference:methode_micro:verif_habby [2021/12/01 15:46] ylecoareren:manuel_reference:methode_micro:verif_habby [2021/12/02 10:38] ylecoarer
Line 11: Line 11:
 For a given variable, and for discrete values of the latter, the biological model provides suitability index SI given values between 0 and 1, qualifying the 'preference' of the fish, the suitability curve is thus constructed. For a given variable, and for discrete values of the latter, the biological model provides suitability index SI given values between 0 and 1, qualifying the 'preference' of the fish, the suitability curve is thus constructed.
  
-Equation (1) allows the calculation of the habitat suitability index $\mathit{HSI_i}$ in a mesh of index i and area Ai of a hydraulic model, from the mean values of the variables (H,V,S) of this mesh noted $\mathit{H_i,V_i,S_i}$.+Equation (1) is used to calculate the habitat suitability index $\mathit{HSI_i}$ according to the user options, in a mesh of index i and area Ai of a hydraulic model, from the mean values of the variables (H,V,S) of this mesh noted $\mathit{H_i,V_i,S_i}$.
  
 (1a) \[HSI_i=SI_H(H_i)\times SI_V(V_i)\times SI_S(S_i)\] (1a) \[HSI_i=SI_H(H_i)\times SI_V(V_i)\times SI_S(S_i)\]
 (1b) \[HSI_i=(SI_H(H_i)\times SI_V(V_i)\times SI_S(S_i))^\frac{1}{3}\] (1b) \[HSI_i=(SI_H(H_i)\times SI_V(V_i)\times SI_S(S_i))^\frac{1}{3}\]
-(1c) \[HSI_i=\frac{SI_H(H_i)\times SI_V(V_i)\times SI_S(S_i)}{3}\] +(1c) \[HSI_i=\frac{SI_H(H_i)+ SI_V(V_i)+ SI_S(S_i)}{3}\] 
-(2) \[WUA=sum_{i=1}^M A_itimes HSI_i\] + 
-(3) \[OSI=frac{WUA}{sum_{i=1}^M A_i}\]+In case the user decides to use only two variables for example (H,V), these equations are adapted in HABBY and become :  
 + 
 +(1_a2) \[HSI_i=SI_H(H_i)\times SI_V(V_i)\] 
 +(1_b2) \[HSI_i=(SI_H(H_i)\times SI_V(V_i))^\frac{1}{2}\] 
 +(1_c2) \[HSI_i=\frac{SI_H(H_i)+ SI_V(V_i)}{2}\] 
 + 
 +The logics (a) product, (b) geometric mean and (c) mean are respected. 
 + 
 +In the case where the biological model is bivariate (H,V) equation (1) is written : 
 + 
 +(1_biv) \[HSI_i=SI_{H,V}(H_i,V_i)\] 
 + 
 + 
 +(2) \[WUA=\sum_{i=1}^M A_i\times HSI_i\] 
 +(3) \[OSI=\frac{WUA}{\sum_{i=1}^M A_i}\]
 (4) \[{SI_{i,S}(S_{i,1},S_{i,2},..S_{i,K})}=\frac{\sum_{k=1}^K S_{i,k}\times SI_S(S_k)}{100} \] (4) \[{SI_{i,S}(S_{i,1},S_{i,2},..S_{i,K})}=\frac{\sum_{k=1}^K S_{i,k}\times SI_S(S_k)}{100} \]
  
  • en/manuel_reference/methode_micro/verif_habby.txt
  • Last modified: 2021/12/02 10:48
  • by ylecoarer