en:manuel_reference:methode_micro:verif_habby

Differences

This shows you the differences between two versions of the page.

en:manuel_reference:methode_micro:verif_habby [2021/12/01 16:00] ylecoareren:manuel_reference:methode_micro:verif_habby [2021/12/02 10:48] () ylecoarer
 6:  6:
  
 Here we will check the implementation of the The Instream Flow Incremental Methodology (IFIM) when using a 2D hydraulic model. Here we will check the implementation of the The Instream Flow Incremental Methodology (IFIM) when using a 2D hydraulic model.
 +
 +==== HABBY habitat calculations ====
  
 The classic case consists of using a set of 3 habitat suitability curves for the variables water height, mean velocity and substrate (H,V,S) for a fish species and for a biological stage. The classic case consists of using a set of 3 habitat suitability curves for the variables water height, mean velocity and substrate (H,V,S) for a fish species and for a biological stage.
 11:  13:
 For a given variable, and for discrete values of the latter, the biological model provides suitability index SI given values between 0 and 1, qualifying the 'preference' of the fish, the suitability curve is thus constructed. For a given variable, and for discrete values of the latter, the biological model provides suitability index SI given values between 0 and 1, qualifying the 'preference' of the fish, the suitability curve is thus constructed.
  
-Equation (1) allows the calculation of the habitat suitability index $\mathit{HSI_i}$ in a mesh of index i and area Ai of a hydraulic model, from the mean values of the variables (H,V,S) of this mesh noted $\mathit{H_i,V_i,S_i}$.+Equation (1) is used to calculate the habitat suitability index $\mathit{HSI_i}$ according to the user options, in a mesh of index i and area Ai of a hydraulic model, from the mean values of the variables (H,V,S) of this mesh noted $\mathit{H_i,V_i,S_i}$.
  
 (1a) \[HSI_i=SI_H(H_i)\times SI_V(V_i)\times SI_S(S_i)\] (1a) \[HSI_i=SI_H(H_i)\times SI_V(V_i)\times SI_S(S_i)\]
 (1b) \[HSI_i=(SI_H(H_i)\times SI_V(V_i)\times SI_S(S_i))^\frac{1}{3}\] (1b) \[HSI_i=(SI_H(H_i)\times SI_V(V_i)\times SI_S(S_i))^\frac{1}{3}\]
-(1c) \[HSI_i=\frac{SI_H(H_i)\times SI_V(V_i)\times SI_S(S_i)}{3}\] +(1c) \[HSI_i=\frac{SI_H(H_i)SI_V(V_i)SI_S(S_i)}{3}\] 
-(2$$\mathit{WUA=sum_{i=1}^M A_itimes HSI_i}$$ + 
-(2) \[WUA=sum_{i=1}^M A_itimes HSI_i\] +In case the user decides to use only two variables for example (H,V), these equations are adapted in HABBY and become :  
-(3) \[OSI=frac{WUA}{sum_{i=1}^M A_i}\] + 
-(4) \[{SI_{i,S}(S_{i,1},S_{i,2},..S_{i,K})}=\frac{\sum_{k=1}^K S_{i,k}\times SI_S(S_k)}{100} \]+(1_a2) \[HSI_i=SI_H(H_i)\times SI_V(V_i)\] 
 +(1_b2) \[HSI_i=(SI_H(H_i)\times SI_V(V_i))^\frac{1}{2}\] 
 +(1_c2) \[HSI_i=\frac{SI_H(H_i)+ SI_V(V_i)}{2}\] 
 + 
 +The logics (a) product(b) geometric mean and (c) mean are respected. 
 + 
 +In the case where the biological model is bivariate (H,V) equation (1) is written : 
 + 
 +(1_biv) \[HSI_i=SI_{H,V}(H_i,V_i)\]
  
 The  weighted useable area WUA of the hydraulic model is obtained from equation (2) and the overall suitability index OSI from equation (3)  The  weighted useable area WUA of the hydraulic model is obtained from equation (2) and the overall suitability index OSI from equation (3) 
 +
 +(2) \[WUA=\sum_{i=1}^M A_i\times HSI_i\]
 +(3) \[OSI=\frac{WUA}{\sum_{i=1}^M A_i}\]
 +
 +
 +
  
 Note that in the particular case of a description of the substrate in percentages per $\mathit{S_k}$ classes and a calculation of habitat in % of substrate, the value of $\mathit{SI_S(S_i)}$ in equation (1) must be replaced by the formulation in equation (4). In this equation $\mathit{S_{i,k}}$ represents the % of substrate of class $\mathit{S_k}$ in mesh i, the substrate being described by a number K of particle size classes k ∈ $\mathit{[1,K]_N}$. Note that in the particular case of a description of the substrate in percentages per $\mathit{S_k}$ classes and a calculation of habitat in % of substrate, the value of $\mathit{SI_S(S_i)}$ in equation (1) must be replaced by the formulation in equation (4). In this equation $\mathit{S_{i,k}}$ represents the % of substrate of class $\mathit{S_k}$ in mesh i, the substrate being described by a number K of particle size classes k ∈ $\mathit{[1,K]_N}$.
  
-Let us now check a HSI calculation in any mesh of a hydraulic model.+(4) \[{SI_{i,S}(S_{i,1},S_{i,2},..S_{i,K})}=\frac{\sum_{k=1}^K S_{i,k}\times SI_S(S_k)}{100} \] 
 + 
 +==== Let us now check a HSI calculation in any mesh of a hydraulic model. ==== 
  
 After building a .hab file with HABBY, choose a biological model for a stage, use the <hi #9BFFFF>**Create duplicate from selection**</hi> button to get 4 times that model. Then set the calculation options, to have not only the calculation for the 3 habitat variables, but also a calculation per variable. After building a .hab file with HABBY, choose a biological model for a stage, use the <hi #9BFFFF>**Create duplicate from selection**</hi> button to get 4 times that model. Then set the calculation options, to have not only the calculation for the 3 habitat variables, but also a calculation per variable.
  • en/manuel_reference/methode_micro/verif_habby.1638370801.txt.gz
  • 2021/12/01 16:00
  • ylecoarer